
Parallel
Programming
Lec 1

1

Books

2

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

3

Sequential Computation
Traditionally, software has been written for serial
computation:
◦ To be run on a single computer having a single Central Processing

Unit (CPU);

◦ A problem is broken into a discrete series of instructions.

◦ Instructions are executed one after another.

◦ Only one instruction may execute at any moment in time.

4

Parallel Computing

A parallel computer is a computer consisting of two or more processors that can
cooperate and communicate to solve large problem fast

One or more memory modules

An interconnection network that connects processors with each other and/or with
the memory modules.

5

Memory Architectures
Shared memory

Distributed memory

Hybrid distributed-shared memory solutions

6

Shared Memory
The Parallel Random Access Machine(PRAM)

Multiple processors can operate independently but share
the same memory resources.

Changes in a memory location effected by one processor
are visible to all other processors (global address space).

7

The variants of PRAM
1. Exclusive Read Exclusive Write PRAM (EREW-PRAM)

2. Concurrent Read Exclusive Write PRAM (CREW-PRAM)

3. Concurrent Read Concurrent Write PRAM (CRCW-PRAM)

4. Exclusive Read Concurrent Write PRAM (ERCW-PRAM)

8

Concurrent Read Concurrent
Write PRAM (CRCW-PRAM)

CONSISTENT-CRCW-PRAM. Processing units may simultaneously attempt to
write to L, but it is assumed that they all need to write the same value to L.

ARBITRARY-CRCW-PRAM. Processing units may simultaneously attempt to
write to L (not necessarily the same value), but it is assumed that only one of
them will succeed. Which processing unit will succeed is not predictable.

PRIORITY-CRCW-PRAM. There is a priority order imposed on the processing
units; e.g., the processing unit with smaller index has higher priority.
Processing units may simultaneously attempt to write to L, but it is assumed
that only the one with the highest priority will succeed.

FUSION-CRCW-PRAM. Processing units may simultaneously attempt to write
to L:

◦ the sum (+), product (*), maximum (max), minimum (min), logical
conjunction (˄), and logical disjunction (˅).

9

Distributed Memory
Distributed memory systems require a communication network to
connect inter - processor memory

Processors have their own local memory, so

◦ it operates independently.

◦ Changes it makes to its local memory have no effect on the
memory of other processors.

When a processor needs access to data in another processor, it is
usually the task of the programmer to define how and when data is
communicated.

Synchronization between tasks is

the programmer's responsibility.

10

Comparison
Shared Memory

Advantages

 Global address space

 Data sharing between tasks is both fast and
uniform

 due to the proximity of memory to CPUs

Disadvantages

 Lack of scalability between memory and
CPUs.

 Adding more CPUs can increases traffic
on the shared memory and CPU path

 Programmer responsibility for
synchronization

 Expensive

Distributed Memory

Advantages

 Memory is scalable with number of
processor

 Each processor can rapidly access
own memory

Disadvantages

 Programmer responsible for many
details

11

Hybrid Distributed-Shared
Memory

Used in most of todays parallel computers.

The shared memory component is usually a cache coherent SMP
machine.

The distributed memory component is the networking of multiple
SMPs. SMPs know only about their own memory - not the memory
on another SMP.

network communications are required to move data from one SMP to
another.

12

Computer Architecture
 Multiple processors:

◦ Flynn’s taxonomy

13

Michael Flynn’s Classification

(1)instruction streams (2) data streams

single instruction & single dataSISD
 A serial (non-parallel) computer.

 Single instruction: only one instruction stream is being acted

on by the CPU during any one clock cycle.

 Single data: only one data stream is being used as input during

any one clock cycle.

 This is the oldest and even today, the most common type of

computer

 Examples: older generation mainframes, minicomputers and

workstations; most modern day PCs.

14

single instruction & multiple dataSIMD

Michael Flynn’s Classification

• A type of parallel computer.

• Single instruction: All processing units
execute the same instruction at any given
clock cycle

• Multiple data: Each processing unit can
operate on a different data element

• Most modern computers, particularly those
with graphics processor units (GPUs)

15

multiple instruction & single dataMISD

Michael Flynn’s Classification

• A single data stream

is fed into multiple

processing units.

• Each processing unit operates
on the data independently via
independent instruction
streams.

16

multiple instruction & multiple dataMIMD

Michael Flynn’s Classification

• The most common type of
parallel computer.

• Multiple Instruction: every
processor may be executing a
different instruction stream

• Multiple Data: every processor
may be working with a different
data stream

• Examples: most current
supercomputers, networked
parallel computer "grids" and
multi-processor SMP computers
- including some types of PCs.

17

Why Use Parallel Computing?

 Save time
◦ Solve a problem faster

 Solve larger problems (more memory)

 Provide concurrency
◦ Doing many things simultaneously

 Economic limits
◦ Fast single processor computers with large amounts of memory are

expensive.

18

Performance Evaluation of
PRAM Algorithms

Let P be a problem of size n that we want to solve (e.g., a computation
over an n-element list).

Let Tseq(n) be the execution time of the best (known) sequential
algorithm for solving P.

Let us now consider a PRAM algorithm that solves P in time Tpar(p, n)
with p CPUs.

The cost of a PRAM algorithm is defined as Cp(n) = p.Tpar(p, n).

The work Wp(n) of a PRAM algorithm is the sum over all CPUs of the
number of performed operations. The difference between cost and work
is that the work does not account for CPU idle time.

19

Performance Evaluation of
PRAM Algorithms
The speedup of a PRAM algorithm is defined as

Sp(n) = Tseq(n) / Tpar(p, n) .

The efficiency of the PRAM algorithm is defined as

Ep(n) = Sp(n) / p = Tseq(n) / p.Tpar(p, n) = Tseq(n) / Cp(n).

Since Tpar ≤ Tseq ≤ p.Tpar, it follows that speedup is bounded above by
and efficiency is bounded above by E ≤ 1

20

Compute the summation of an
array of integer numbers

Suppose that we are given the problem P ≡ “add n given numbers.”

Then “add numbers 1, 2, 3, 4, 5, 6, 7, 8” is an instance of size = n = 8
of the problem P.

Let us now focus on all instances of size 8, that is, instances of the
form “add numbers a1;a2;a3;a4;a5;a6;a7;a8.”

The fastest sequential algorithm for computing the sum

Sum = 0

for (i = 1; i ≤ 8; i++)

sum += ai

requires Tseq(8) = 7 steps → Tseq(n) = O(n)

21

Compute the summation of an
array of integer numbers

22

23

s0 s1

p0

s2 s3

p1

s4 s5

p2

s6 s7

p3

s8 s9

p4

s10 s11

p5

s12 s13

p6

s14 s15

p7

s0=s0+s1 s2=s2+s3 s4=s4+s5 s6=s6+s7 s8=s8+s9 s10=s10+s11 s12=s12+s13 s14=s14+s15

i = 0

p0

s0=s0+s2

p1

s4=s4+s6

p2

s8=s8+s10

p3

s12=s12+s14

i = 1

p0

s0=s0+s4

p1

s8=s8+s12

i = 2

p0

s0=s0+s8

i = 3

Compute the summation of an
array of integer numbers

Sum = 0

For j = 0 to j < n/2 do parallel
For i = 0 to i < 2 do

s[j*2+i] = a[j*2+i]

For i = 0 to i<log(n) do
For j = 0 to j <n/(2(i+1)) do in parallel

s[j * 2(i+1)] += s[j * 2(i+1)+2i]

sum = s[0]

24

Compute the summation of an
array of integer numbers

In general, instances of size n of P can be solved in
parallel time Tpar = O(logn)

speedup is S(n) = Tseq(n) / Tpar(n) = O(n/logn).

Cost C(n) = n*O(logn) = O(nlogn)

E(n) = Tseq(n) / C(n) = O(n / (nlogn)) = O(1/logn) < 1

25

?

26

